

- 32 to 1,250 Cycles Per Revolution (CPR)
- Tracks 0 to 300,000 Cycles Per Second
- 2-Channel Quadrature TTL Squarewave Outputs
- Operating Temperature of -40° to $+100^{\circ} \mathrm{C}$
- Powered from a Single +5VDC Power Supply
- Allows for +/- .010" Axial Shaft Play

The ENC-A2N is single-ended encoder that requires a minimum shaft length of .445 " and maximum shaft length of .575 ", and is compatible with shaft sizes ranging from $.079^{\prime \prime}$ to .394 " in diameter. The ENC-A2N provides digital feedback information for motion control applications that require position, speed and/or direction control. This line of encoders is RoHS and REACH Certified.

Optical Encoder Module Update:

This new transmissive optical encoder module is designed to be an improved replacement for the Avago HEDS9000 series encoder module. This module is designed to detect rotary position when used with a code wheel. The new module consists of a lensed LED source and a monolithic detector IC enclosed in a small polymer package. The new module uses phased array detector technology to provide superior performance and greater tolerances over traditional aperture mask type encoders. Each module is resolution specific and is matched to the resolution of a code wheel. All standard resolutions offered by the HEDS-9000 series encoder module, as well as additional resolutions, are now supported by the new module. The new module operates with a single 5 V supply and provides single ended outputs which are capable of both sinking and sourcing 8 mA at TTL levels. An internal 0.1 uF decoupling capacitor is designed into the new module to provide enhanced noise immunity over the HEDS-9000 series encoder modules. Physically, the new module has no external wire loops which can interfere when mounting. The connector pins are 0.051 " shorter than HEDS modules, while still providing .30 " insertion depth.

$$
\begin{aligned}
& 3 \text { = Base Mounting Holes Become 0.125" } \\
& \text { A = Adds Self-Aligning Shoulder to Base } \\
& \text { G = Adds 1.812" Mounting Ears to Base } \\
& \text { R = Adds 3-Slot Adapter to Bottom of Base } \\
& \text { Blank = Default }
\end{aligned}
$$

L010723

DEFAULT OPTION:

Note: All dimensions are in inches

Default Option:
H-Option:

Note: Dimensions are in inches

Cover Options:

E-Option

H - Option

Default

Description

E-Option provides a cylindrical extension cover for larger shafts. The required shaft length is .445 " to .795 ".
Note: E-option + R-Option the required shaft length is .570 " to $.920^{\prime \prime}$.
Shaft < .375-a .375" diameter hole is used
Shaft $\geq .375$ " or larger - a .500 " diameter hole is used
Minimum Shaft Length: greater than .445"
Note: H-Option + R-Option the required shaft length is > .570"
The required length is $.445^{\prime \prime}$ to $.570^{\prime \prime}$
Note: Default Option + R-Option the required shaft length is .570 " to .695"

G-OPTION:

Note: All dimensions are in inches
(Note: Base Mounting Screws are NOT included. \#2-56 or \#4-40 screws can be used to mount the base to your mounting surface.)

SINGLE-END ENCODER TIMING DIAGRAMS

ROTATION:
CW - B LEADS A, CCW - A LEADS B

Timing Characteristics	Symbol	Min	Typ	Max	Units
Cycle Error	C	-	3.0	5.5	${ }^{\circ} \mathrm{e}$
Symmetry	X, Y	150	180	210	${ }^{\circ} \mathrm{e}$
Quadrature	Z	60	90	120	${ }^{\circ} \mathrm{e}$
Index Pulse Width	Po	60	90	120	${ }^{\circ} \mathrm{e}$
Ch. I Rise After Ch. B or Ch. A Fall	t 1	10	100	250	ns
Ch. I Fall After Ch. B or Ch. A Rise	t 2	70	150	300	ns

SINGLE-ENDED ENCODER PINOUT TOP OF ENCODER FACING PLUG

Pin \#	Function
1	Ground
2	No Connection
3	Channel A
4	+ VVDC Input
5	Channel B

Terminology	Definition
CPR(N):	The Number of Cycles Per Revolution
One Shaft Rotation:	360 mechanical degrees, N cycles
One Electrical Degree (${ }^{\circ} \mathrm{e}$):	1/360th of one cycle
One Cycle (C):	360 electrical degrees (${ }^{\circ}$ e). Each cycle can be decoded into 1 or 4 codes, referred to as X 1 or X 4 resolution multiplication
Symmetry:	A measure of the relationship between (X) and (Y) in electrical degrees, nominally $180^{\circ} \mathrm{e}$
Quadrature (Z):	The phase lag or lead between channels A and B in electrical degrees, nominally $90^{\circ} \mathrm{e}$
Index (CH I):	The index output goes high once per revolution, coincident with the low states of channels A and B, nominally $1 / 4$ of one cycle $\left(90^{\circ} \mathrm{e}\right)$

Recommended Operating Conditions	Min	Max	Units
Temperature (CPR < 2000)	-40	100	${ }^{\circ} \mathrm{C}$
Temperature (CPR $\geq 2000)$	-25	100	${ }^{\circ} \mathrm{C}$
Load Capacitance	-	100	pF
Count Frequency (CPR 51250$)$	-	300	kHz
Count Frequency (CPR 2000-2500)	-	360	kHz
Count Frequency (CPR 4000+)	-	720	kHz

Parameter	Max	Units
Vibration (5 to 2 kHz$)$	20	g
Shaft Axial Play	$+/-0.01$	in.
Shaft Eccentricity Plus Radial Play	0.004	in.
Acceleration	250,000	rad $/ \mathrm{sec}^{2}$

Cables:

The following cables are compatible with Anaheim Automation's A2N series encoder. Select a cable length from the table below:

Cable Part Number	Length
ENC-CBL-AA4175	1 ft.
ENC-CBL-AA4175-02	2 ft.
ENC-CBL-AA4175-05	5 ft.
ENC-CBL-AA4175-10	10 ft.

NOTE: For pricing and other information on cables and centering tools, please visit Accessories on our website.

Parameter	Min	Typ	Max	Units
Supply Voltage	4.5	5.0	5.5	Volts
Supply Current CPR < 500, no load CPR ≥ 500 and <2000, no load $C P R \geq 2000$, no load	-	$\begin{aligned} & 27 \\ & 55 \\ & 72 \end{aligned}$	$\begin{aligned} & 30 \\ & 57 \\ & 85 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
$\begin{aligned} & \text { Low-Level Output } \\ & \mathrm{I}_{\mathrm{oL}}=8 \mathrm{~mA} \max (C P R<2000) \\ & \mathrm{I}_{\mathrm{oL}}=5 \mathrm{~mA} \max (C P R \geq 2000) \\ & \text { no load }(C P R \geq 2000) \end{aligned}$		$\begin{gathered} - \\ 0.25 \end{gathered}$	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & V \\ & V \\ & V \end{aligned}$
High-Level Output $\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA} \max (\mathrm{CPR}<\mathbf{2 0 0 0})$ $\mathrm{I}_{\mathrm{OL}}=5 \mathrm{~mA} \max (C P R \geq 2000)$ no load (CPR < 2000) no load (CPR ≥ 2000)	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 4.8 \\ & 3.5 \end{aligned}$	- -	$\begin{aligned} & V \\ & V \\ & V \\ & V \end{aligned}$
Output Current Per Channel (CPR < 2000)	-8.0	-	8.0	mA
Output Current Per Channel (CPR ≥ 2000)	-5	-	5	mA
Output Rise Time ($C P \mathrm{P}$ < 2000)	-	110	-	nS
Output Rise Time ($C P R \geq 2000$)	-	50	-	nS
Output Fall Time (CPR < 2000)	-	100	-	nS
Output Fall Time (CPR \geq 2000)	-	50	-	nS

* Unloaded high level output voltage is 4.80 V typically, 4.2 V minimum.

Speed Calculation		Units
CPR ≤ 1250	$18 \times 10^{6} /$ CPR	RPM
CPR 2000-2500	$21.6 \times 10^{6} /$ CPR	RPM
CPR 4000+	$43.2 \times 10^{6} /$ CPR	RPM

* 60,000 RPM is the maximum RPM due to mechanical limitations.

Centering Tools:

Centering tools are optional, but recommended for a more precise installation.

Bore Size	
$079=2 \mathrm{~mm}$	$236=6 \mathrm{~mm}$
$118=3 \mathrm{~mm}$	$250=1 / 4^{\prime \prime}$
$125=1 / 8^{\prime \prime}$	$276=7 \mathrm{~mm}$
$157=4 \mathrm{~mm}$	$313=5 / 15^{\prime \prime}$
$188=3 / 16^{\prime \prime}$	$375=3 / 8^{\prime \prime}$
$197=5 \mathrm{~mm}$	$394=10 \mathrm{~mm}$

